II. On nonlocality and incompatibility breaking channels

Definition 2.0. Let \mathcal{H} be complex separable Hilbert space and $\mathcal{L}(\mathcal{H})$ be the set of all bounded operator H. A postive operator $\varrho \in \mathcal{L}(\mathcal{H})$ of trace one is said to be a **state**, and the set of all states is denoted by $\mathcal{S}(\mathcal{H})$. A positive operator A that is bounded by the operator I is called an **effect**, the set of all effect is denoted by $\mathcal{E}(\mathcal{H})$, note that:

$$\mathcal{L}(\mathcal{H}) \subset \mathcal{S}(\mathcal{H}) \tag{1}$$

Definition 2.1 A class \mathcal{A} of sets is said to be an **algebra** in a d-dimensional complex space if it has the following properties:

- (a) $\emptyset \in \mathcal{A}$
- (b) If $U \in \mathcal{A}$ and $V \in \mathcal{A}$, then $U V \in \mathcal{A}$
- (c) If $U \in \mathcal{A}$ and $V \in \mathcal{A}$, then $U \cup V \in \mathcal{A}$
- (d) $C^d \in \mathcal{A}$

Furthurmore, an algebra is called an σ -algebra, then it has the following property:

If
$$U_n \in \mathcal{A}$$
 for $n = 1, 2, ..., \text{then } \bigcup_{n=1}^{\infty} U_n \in \mathcal{A}$ (2)

Note that since a quantum channel $\Lambda : \mathcal{L}(\mathcal{H}_{\mathcal{A}}) \to \mathcal{L}(\mathcal{H}_{\mathcal{B}})$ where $\mathcal{L}(\mathcal{H}_i)$ denotes the operator space of H_i , and since both the operator space of $H_{\mathcal{A}}$ and $H_{\mathcal{B}}$ belong to C*-algebra, the channel Λ can be seen as a mapping C*-algebra to iteself, and generally, only completely positive, trace-preserving (CPTP) map is considered.

Lemma 2.2. In a two qubits case, a unital channel \mathcal{E} is said to be CHSH-nonlocality-breaking iff. the output state $\mathbb{I} \otimes \mathcal{E}(|\Phi^+\rangle \langle \Phi^+|)$ does not violate CHSH inequality. Such channels are useless for distributing correlations that can be violating CHSH inequality.

Proof. The correlation matrix of a general CHSH operator can be written as:

$$B = \mathbf{a} \otimes (\mathbf{b} + \mathbf{b}') + \mathbf{a} \otimes (\mathbf{b} - \mathbf{b}')$$
(3)

the CHSH operator can then be diagonalizes to:

$$\mathcal{B} = d_1 \sigma_1 \otimes \sigma_1 + d_3 \sigma_3 \otimes \sigma_3 \tag{4}$$

Proposition 2.2.1 The CHSH value $tr(B\rho)$ is maximized by a MES.

Proof

And arbitrary pure state can be written as:

$$\left|\psi\right\rangle = R \otimes \mathbb{I}\left|\Phi^{+}\right\rangle \tag{5}$$

and hence the CHSH value can be bounded by Cauchy-Schwarz inequality:

$$\langle \psi | \mathcal{B} | \psi \rangle = d_1 \langle \psi | \sigma_1 \otimes \sigma_1 | \psi \rangle + d_3 \langle \psi | \sigma_3 \otimes \sigma_3 | \psi \rangle$$

$$= d_1 \langle \Phi^+ | R^{\dagger} \otimes \mathbb{I} \sigma_1 \otimes \sigma_1 R \otimes \mathbb{I} | \Phi^+ \rangle + d_3 \langle \Phi^+ | R^{\dagger} \otimes \mathbb{I} \sigma_3 \otimes \sigma_3 R \otimes \mathbb{I} | \Phi^+ \rangle$$

$$= d_1 \operatorname{tr}(R^{\dagger} \sigma_1 R \sigma_1) + d_3 \operatorname{tr}(R^{\dagger} \sigma_3 R \sigma_3)$$

$$\leq (d_1 + d_3) \operatorname{tr}(R^{\dagger} R) \leq d_1 + d_3$$

$$(6)$$

Where the bound is satisfied as $R = \mathbb{I}$, meaning that the CHSH value is maximized by a MES.

Then if the channel \mathcal{E} is unital, then the state:

$$\operatorname{tr}(\mathcal{B}(\mathbb{I}\otimes\mathcal{E}\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|)) = \operatorname{tr}(\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|\mathbb{I}\otimes\mathcal{E}^{\dagger}(\mathcal{B}))\tag{7}$$

with \mathcal{E}^{\dagger} being the dual map of \mathcal{E} , and since \mathcal{E} is unital, $\operatorname{tr}(\mathcal{E}(\mathcal{B})) = 0$, and similarly by the proof of Proposition 2.2.1, it can be seen that the CHSH value is still bounded by MES. \Box

Definition 2.3 Joint measurability is usually seen as the equivalent of commutativity, while it is true if the observables are represented solely by self-adjoint operators, generally it's not true for

Definition 2.4 A set of observables $\mathcal{A} = \{A_1, A_2, ..., A_n\}$ is said to be **compatible** iff. \exists an observable $G \ni G(X_1, \Omega_{A_2}, ..., \Omega_{A_n}) = A_1, G(\Omega_{A_1}, X_2, ..., \Omega_{A_n}) = A_2, ..., G(\Omega_{A_1}, \Omega_{A_2}, ..., X_n) = A_n$